Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
J Biomech ; 163: 111917, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38184906

RESUMEN

After stroke, deficits in paretic single limb stance (SLS) are commonly observed and affect walking performance. During SLS, the hip abductor musculature is critical in providing vertical support and regulating balance. Although disrupted paretic hip abduction torque production has been identified in individuals post-stroke, interpretation of previous results is limited due to the discrepancies in weight-bearing conditions. Using a novel perturbation-based assessment that could induce SLS by removing the support surface underneath one limb, we aim to investigate whether deficits in hip abduction torque production, vertical body support, and balance regulation remain detectable during SLS when controlling for weight-bearing, and whether these measures are associated with gait performance. Our results showed that during the perturbation-induced SLS, individuals post-stroke had lower hip abduction torque, less vertical stiffness, and increased frontal plane angular impulse at the paretic limb compared to the non-paretic limb, while no differences were found between the paretic limb and healthy controls. In addition, vertical stiffness during perturbation-induced SLS was positively correlated with single support duration during gait at the paretic limb and predicted self-selected and fast walking speeds in individuals post-stroke. The findings indicate that reduced paretic hip abduction torque during SLS likely affects vertical support and balance control. Enhancing SLS hip abduction torque production could be an important rehabilitation target to improve walking function for individuals post-stroke.


Asunto(s)
Trastornos Neurológicos de la Marcha , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Marcha/fisiología , Accidente Cerebrovascular/complicaciones , Caminata/fisiología , Cadera , Fenómenos Biomecánicos , Paresia
2.
MethodsX ; 11: 102399, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37830002

RESUMEN

Assessment of protective arm reactions associated with forward falls are typically performed by dropping research participants from a height onto a landing surface. The impact velocity is generally modulated by controlling the total height of the fall. This contrasts with an actual fall where the fall velocity is dependent on several factors in addition to fall height and not likely predictable at the onset of the fall. A counterweight and pulley system can be used to modulate the fall velocity in simulated forward falls in a manner that is not predictable to study participants, enhancing experimental validity. However, predicting the fall velocity based on participant height and weight and counterweight mass is not straightforward. In this article, the design of the FALL simulator For Injury prevention Training and assessment (FALL FIT) system is described. A dynamic model of the FALL FIT and counterweight system is developed and model parameters are fit using nonlinear optimization and experimental data. The fitted model enables prediction of fall velocity as a function of participant height and weight and counterweight load. The method can be used to provide controllable perturbations thereby elucidating the control strategy used when protecting the body from injury in a forward fall, how the control strategy changes because of aging or dysfunction or as a method for progressive protective arm reaction training.•Construction of device to simulate forward falls with controllable impact velocity using material that are commercially available is described•A dynamic model of the FALL FIT is developed to estimate the impact velocity of a simulated forward fall using participant height and counterweight load•The dynamic model is validated using data from 3 previous studies.

3.
bioRxiv ; 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37090545

RESUMEN

Background: After stroke, deficits in paretic single limb stance (SLS) are commonly observed and affect walking performance. During SLS, the hip abductor musculature is critical in providing vertical support and regulating balance. Although disrupted paretic hip abduction torque production has been identified in individuals post-stroke, interpretation of previous results is limited due to the discrepancies in weight-bearing conditions. Objective: To investigate whether deficits in hip abduction torque production, vertical body support, and balance regulation remain during SLS when controlling for weight-bearing using a perturbation-based assessment, and whether these measures are associated with gait performance. Methods: We compared hip abduction torque, vertical stiffness, and frontal plane angular impulse between individuals post-stroke and healthy controls when SLS was induced by removing the support surface underneath one limb. We also tested for correlations between vertical stiffness and angular impulse during perturbation-induced SLS and gait parameters during overground walking. Results: During the perturbation-induced SLS, lower hip abduction torque, less vertical stiffness, and increased frontal plane angular impulse were observed at the paretic limb compared to the non-paretic limb, while no differences were found between the paretic limb and healthy controls. Vertical stiffness during perturbation-induced SLS was positively correlated with single support duration during gait at the paretic limb and predicted self-selected and fast walking speeds in individuals post-stroke. Conclusions: Reduced paretic hip abduction torque during SLS likely affects vertical support and balance control. Enhancing SLS hip abduction torque production could be an important rehabilitation target to improve walking function for individuals post-stroke.

4.
Sports Biomech ; : 1-15, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37038313

RESUMEN

Preparatory lower-limb loading conditions may affect the jump-to-reach performance of soccer goalkeepers. This study investigated the effect of pre-jump lower-limb loading/unloading during bilateral knee flexion-extension movements on sideways jump-to-reach performance in 18 male collegiate soccer goalkeepers. Participants performed the two-choice (high and low targets) reaction-time single-leg jump-to-reach task under two conditions: without preparatory movements (no-prep) and with continuous alternating knee extension and flexion movements (prep). The 'go' cue was provided with different preparatory loading conditions during the pre-jump knee extension and flexion phases. Performance was assessed using three-dimensional kinematic data and ground reaction forces. A significant main effect of the preparatory condition was observed for the jump take-off time. Pairwise comparisons revealed that the jump take-off time was 3.4-4.4% faster when initiated during the knee flexion phase than the no-prep condition and the extension phase (p ≤ .028). Increasing lower-limb loading and downward body movement with knee flexion appeared to facilitate effective loading to take-off to reach the high target and faster downward-directed take-off to reach the low target, respectively. Pre-jump knee flexion movement could be utilised by soccer goalkeepers to facilitate faster take-off to maximise their chances of saving shots within the reach of single-leg side-jumping.

5.
J Biomech ; 150: 111515, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36867953

RESUMEN

Protective arm reactions have been shown to be an important injury avoidance mechanism in unavoidable falls. Protective arm reactions have been shown to be modulated with fall height, however it is not clear if they are modulated with impact velocity. The aim of this study was to determine if protective arm reactions are modulated in response to a forward fall with an initially unpredictable impact velocity. Forward falls were evoked via sudden release of a standing pendulum support frame with adjustable counterweight to control fall acceleration and impact velocity. Thirteen younger adults (1 female) participated in this study. Counterweight load explained more than 89% of the variation of impact velocity. Angular velocity at impact decreased (p < 0.001), drop duration increased from 601 ms to 816 ms (p < 0.001), and the maximum vertical ground reaction force decreased from 64%BW to 46%BW (p < 0.001) between the small and large counterweight. Elbow angle at impact (129 degrees extension), triceps (119 ms) and biceps (98 ms) pre-impact time, and co-activation (57%) were not significantly affected by counterweight load (p-values > 0.08). Average triceps and biceps EMG amplitude decreased from 0.26 V/V to 0.19 V/V (p = 0.004) and 0.24 V/V to 0.11 V/V (p = 0.002) with increasing counterweight respectively. Protective arm reactions were modulated with fall velocity by reducing EMG amplitude with decreasing impact velocity. This demonstrates a neuromotor control strategy for managing evolving fall conditions. Future work is needed to further understand how the CNS deals with additional unpredictability (e.g., fall direction, perturbation magnitude, etc.) when deploying protective arm reactions.


Asunto(s)
Articulación del Codo , Músculo Esquelético , Animales , Femenino , Músculo Esquelético/fisiología , Movimiento/fisiología , Articulación del Codo/fisiología , Miembro Anterior , Fenómenos Biomecánicos
6.
Arch Phys Med Rehabil ; 104(2): 169-178, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36087806

RESUMEN

OBJECTIVE: To investigate the effect of 16-week home-based physical therapy interventions on gait and muscle strength. DESIGN: A single-blinded randomized controlled trial. SETTING: General community. PARTICIPANTS: Thirty-four older adults (N=34) post hip fracture were randomly assigned to either experimental group (a specific multi-component intervention group [PUSH], n=17, 10 women, age=78.6±7.3 years, 112.1±39.8 days post-fracture) or active control (a non-specific multi-component intervention group [PULSE], n=17, 11 women, age=77.8±7.8 years, 118.2±37.5 days post-fracture). INTERVENTION: PUSH and PULSE groups received 32-40 sessions of specific or non-specific multi-component home-based physical therapy, respectively. Training in the PUSH group focused on lower extremity strength, endurance, balance, and function for community ambulation, while the PULSE group received active movement and transcutaneous electrical nerve stimulation on extremities. MAIN OUTCOME MEASURES: Gait characteristics, and ankle and knee muscle strength were measured at baseline and 16 weeks. Cognitive testing of Trail Making Test (Part A: TMT-A; Part-B: TMT-B) was measured at baseline. RESULTS: At 16 weeks, both groups demonstrated significant increases in usual (P<.05) and fast (P<.05) walking speed, while there was no significant difference in increases between the groups. There was only 1 significant change in lower limb muscle strength over time (non-fractured side) between the groups, such that PUSH did better (mean: 4.33%, 95% confidence interval:1.43%-7.23%). The increase in usual and fast walking speed correlated with the baseline Trail-making Test-B score (r=-0.371, P=.037) and improved muscle strength in the fractured limb (r=0.446, P=.001), respectively. CONCLUSION: Gait speed improved in both home-based multicomponent physical therapy programs in older adults after hip fracture surgery. Muscle strength of the non-fractured limb improved in the group receiving specific physical therapy training. Specific interventions targeting modifiable factors such as muscle strength and cognitive performance may assist gait recovery after hip fracture surgery.


Asunto(s)
Fracturas de Cadera , Humanos , Femenino , Anciano , Anciano de 80 o más Años , Fracturas de Cadera/rehabilitación , Marcha/fisiología , Caminata , Modalidades de Fisioterapia/psicología , Fuerza Muscular
7.
Sci Rep ; 12(1): 19104, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36352032

RESUMEN

Decreased loading of the paretic lower limb and impaired weight transfer between limbs negatively impact balance control and forward progression during gait in individuals post-stroke. However, the biomechanical and neuromuscular control mechanisms underlying such impaired limb loading remain unclear, partly due to their tendency of avoiding bearing weight on the paretic limb during voluntary movement. Thus, an approach that forces individuals to more fully and rapidly load the paretic limb has been developed. The primary purpose of this study was to compare the neuromechanical responses at the ankle and knee during externally induced limb loading in people with chronic stroke versus able-bodied controls, and determine whether energy absorption capacity, measured during induced limb loading of the paretic limb, was associated with walking characteristics in individuals post-stroke. Results revealed reduced rate of energy absorption and dorsiflexion velocity at the ankle joint during induced limb loading in both the paretic and non-paretic side in individuals post-stroke compared to healthy controls. The co-contraction index was higher in the paretic ankle and knee joints compared to the non-paretic side. In addition, the rate of energy absorption at the paretic ankle joint during the induced limb loading was positively correlated with maximum walking speed and negatively correlated with double limb support duration. These findings demonstrated that deficits in ankle dorsiflexion velocity may limit the mechanical energy absorption capacity of the joint and thereby affect the lower limb loading process during gait following stroke.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Rehabilitación de Accidente Cerebrovascular/métodos , Fenómenos Biomecánicos/fisiología , Marcha/fisiología , Caminata/fisiología , Accidente Cerebrovascular/complicaciones , Articulación del Tobillo , Extremidad Inferior
8.
Front Sports Act Living ; 4: 1015394, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275443

RESUMEN

Since the mid-2000s, perturbation-based balance training has been gaining interest as an efficient and effective way to prevent falls in older adults. It has been suggested that this task-specific training approach may present a paradigm shift in fall prevention. In this review, we discuss key concepts and common issues and questions regarding perturbation-based balance training. In doing so, we aim to provide a comprehensive synthesis of the current evidence on the mechanisms, feasibility and efficacy of perturbation-based balance training for researchers and practitioners. We address this in two sections: "Principles and Mechanisms" and "Implementation in Practice." In the first section, definitions, task-specificity, adaptation and retention mechanisms and the dose-response relationship are discussed. In the second section, issues related to safety, anxiety, evidence in clinical populations (e.g., Parkinson's disease, stroke), technology and training devices are discussed. Perturbation-based balance training is a promising approach to fall prevention. However, several fundamental and applied aspects of the approach need to be further investigated before it can be widely implemented in clinical practice.

9.
MethodsX ; 9: 101702, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35518921

RESUMEN

The use of the hands and arms is an important protective mechanism in avoiding fall-related injury. The aim of this study was to evaluate the test-retest reliability of fall dynamics and evokd protective arm response kinematics and kinetics in forward falls simulated using the FALL simulator For Injury prevention Training and assessment system (FALL FIT). Fall FIT allows experimental control of the fall height and acceleration of the body during a forward fall. Two falls were simulated starting from 4 initial lean angles in Experiment 1 and with 4 different fall accelerations in Experiment 2. Fourteen younger adults (25.1±3.5 years) and 13 older adults (71.3±3.7 years) participated in Experiment 1 and 13 younger adults (31.8±5.7 years) participated in Experiment 2. Intraclass correlation coefficients (ICC) were used to the evaluate absolute agreement of single measures at each condition and averages across conditions. Average measures of fall dynamics and evoked kinematics and kinetics exhibited excellent reliability (ICC(A,4)>0.86). The reliability of single measures (ICC(A,1) > 0.59) was good to excellent, although 18% of single measures had a reliability (ICC(A,1)) between 0.00 and 0.57. The FALL FIT was shown to have good to excellent reliability for most measures. FALL FIT can produce a wide range of fall dynamics through modulation of initial lean angle and body acceleration. Additionally, the range of fall velocities and evoked kinematics and kinetics are consistent with previous fall research.•The FALL FIT can be used to gain further insight into the control of protective arm reactions and may provide a therapeutic tool to assess and train protective arm reactions.

10.
Hum Mov Sci ; 81: 102914, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34923206

RESUMEN

Fall related injuries in older adults are a major healthcare concern. During a fall, the hands and arms play an important role in minimizing trauma from ground impact. Although older adults are able to orient the hands and arms into a protective orientation after falling and prior to ground impact, an inability to avoid increased body impact occurs with age. Previous investigations have generally studied rapid arm movements in the pre-impact phase or absorbing energy in the post-impact phase. There are no known studies that have directly examined both the pre-impact and post-impact phase in sequence in a forward fall. The aim of this study was to identify age-related biomechanical and neuromuscular changes in evoked arm reactions in response to forward falls that may increase fall injury risk. Fourteen younger and 15 older adults participated. Falls were simulated while standing with torso and legs restrained via a moving pendulum system from 4 different initial lean angles. While there was not a significant age-related difference in the amount of energy absorbed post-impact (p = 0.68), older adults exhibited an 11% smaller maximum vertical ground reaction force when normalized to body weight (p = 0.031), and 8 degrees less elbow extension at impact (p = 0.045). A significant interaction between age and initial lean angle (p = 0.024), indicated that older adults required 54%, 54%, 41%, and 57% greater elbow angular displacement after impact at the low, medium, medium-high, and high initial lean angles compared to younger adults. These results suggested older adults may be at greater risk of increased body impact due to increased elbow flexion angular displacement after impact when the hands and arms are able to contact the ground first. Both groups exhibited robust modulation to the initial lean angle with no observed age-related differences in the initial onset timing or amplitude of muscle activation levels. There were no significant age-related differences in the EMG timing, amplitude or co-activation of muscle activation preceding impact or following impact indicating comparable neuromotor response patterns between older and younger adults. These results suggest that aging changes in muscular elements may be more implicated in the observed differences than changes in neuromuscular capacity. Future work is needed to test the efficacy of different modalities (e.g. instruction, strength, power, perturbation training, fall landing techniques) aimed at reducing fall injury risk.


Asunto(s)
Accidentes por Caídas , Mano , Accidentes por Caídas/prevención & control , Anciano , Fenómenos Biomecánicos , Humanos , Cinética , Movimiento
11.
Front Sports Act Living ; 3: 670649, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34079935

RESUMEN

Lower-limb weight-bearing load distribution in stationary standing influences the timing of rapid first step initiation of importance for functional movement activities and agility performance in sports. This study investigated the effect of pre-step lower-limb loading and unloading with preparatory knee flexion-extension movements on sidestepping performance in fifteen male collegiate basketball players. Participants performed two-choice (step limb) reaction time sidestepping under two conditions: without preparatory movements before the go cue (no-prep-NP) and with continuous alternating knee extension and flexion movements (prep-P). The reaction signal was provided at the beginning of knee extension and flexion and during these movements which corresponded with the largest and smallest loading instants and the transition states between those instants. Sidestepping performance was assessed with three-dimensional kinematic data and ground reaction forces. Step initiation onset time was significantly faster by 13-15% than the NP condition when initiated in the knee flexion phase (p ≤ 0.028, r ≥ 0.70), whereas step-limb unloading interval from step initiation to step lift-off was significantly faster by 12-15% in the knee extension phase (p ≤ 0.01, r ≥ 0.74). The preparatory movements significantly shortened step lift-off by 10-12% (p ≤ 0.013, r ≥ 0.73) and step duration by 17-21% (p < 0.001, r ≥ 0.85) with 19-22% faster step velocity (p < 0.001, r ≥ 0.84), which resulted in 14-15% shorter overall time to step landing (p < 0.001, r ≥ 0.84), irrespective of the loading phases. These results indicated that lower-limb loading with pre-step knee flexion facilitated faster step initiation, while lower-limb unloading with knee extension facilitated faster step-limb unloading, both resulting in faster step lift-off. Bilateral knee flexion-extension movements as a preparatory action could be utilized by invasion sports players to facilitate reactive stepping performance for more effective movement initiation.

12.
J Gerontol A Biol Sci Med Sci ; 76(9): e194-e202, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-33491052

RESUMEN

BACKGROUND: This factorial, assessor-blinded, randomized, and controlled study compared the effects of perturbation-induced step training (lateral waist-pulls), hip muscle strengthening, and their combination, on balance performance, muscle strength, and prospective falls among older adults. METHODS: Community-dwelling older adults were randomized to 4 training groups. Induced step training (IST, n = 25) involved 43 progressive perturbations. Hip abduction strengthening (HST, n = 25) utilized progressive resistance exercises. Combined training (CMB, n = 25) included IST and HST, and the control performed seated flexibility/relaxation exercises (SFR, n = 27). The training involved 36 sessions for a period of 12 weeks. The primary outcomes were the number of recovery steps and first step length, and maximum hip abduction torque. Fall frequency during 12 months after training was determined. RESULTS: Overall, the number of recovery steps was reduced by 31% and depended upon the first step type. IST and CMB increased the rate of more stable single lateral steps pre- and post-training than HST and SFR who used more multiple crossover and sequential steps. The improved rate of lateral steps for CMB exceeded the control (CMB/SFR rate ratio 2.68). First step length was unchanged, and HST alone increased hip torque by 25%. Relative to SFR, the fall rate ratios (falls/person/year) [95% confidence interval] were CMB 0.26 [0.07-0.90], IST 0.44 [0.18-1.08], and HST 0.30 (0.10-0.91). CONCLUSIONS: Balance performance through stepping was best improved by combining perturbation and strength training and not strengthening alone. The interventions reduced future falls by 56%-74% over the control. Lateral balance perturbation training may enhance traditional programs for fall prevention.


Asunto(s)
Vida Independiente , Equilibrio Postural , Anciano , Terapia por Ejercicio , Humanos , Músculo Esquelético , Estudios Prospectivos
13.
J Neuroeng Rehabil ; 18(1): 5, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33413441

RESUMEN

BACKGROUND: Impaired movement preparation of both anticipatory postural adjustments and goal directed movement as shown by a marked reduction in the incidence of StartReact responses during a standing reaching task was reported in individuals with stroke. We tested how transcranial direct current stimulation (tDCS) applied over the region of premotor areas (PMAs) and primary motor area (M1) affect movement planning and preparation of a standing reaching task in individuals with stroke. METHODS: Each subject performed two sessions of tDCS over the lesioned hemisphere on two different days: cathodal tDCS over PMAs and anodal tDCS over M1. Movement planning and preparation of anticipatory postural adjustment-reach sequence was examined by startReact responses elicited by a loud acoustic stimulus of 123 dB. Kinetic, kinematic, and electromyography data were recorded to characterize anticipatory postural adjustment-reach movement response. RESULTS: Anodal tDCS over M1 led to significant increase of startReact responses incidence at loud acoustic stimulus time point - 500 ms. Increased trunk involvement during movement execution was found after anodal M1 stimulation compared to PMAs stimulation. CONCLUSIONS: The findings provide novel evidence that impairments in movement planning and preparation as measured by startReact responses for a standing reaching task can be mitigated in individuals with stroke by the application of anodal tDCS over lesioned M1 but not cathodal tDCS over PMAs. This is the first study to show that stroke-related deficits in movement planning and preparation can be improved by application of anodal tDCS over lesioned M1. Trial registration ClinicalTrial.gov, NCT04308629, Registered 16 March 2020-Retrospectively registered, https://www.clinicaltrials.gov/ct2/show/NCT04308629.


Asunto(s)
Corteza Motora/fisiopatología , Reflejo de Sobresalto/fisiología , Rehabilitación de Accidente Cerebrovascular/métodos , Accidente Cerebrovascular/fisiopatología , Estimulación Transcraneal de Corriente Directa/métodos , Estimulación Acústica , Adulto , Fenómenos Biomecánicos , Femenino , Humanos , Masculino , Movimiento , Posición de Pie
14.
Clin Biomech (Bristol, Avon) ; 81: 105234, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33213932

RESUMEN

BACKGROUND: Hip fracture is a debilitating injury, especially in older adults. The purpose of this study was to determine the relationships between Trail-Making test performance and parameters of the choice stepping reaction time test in community-dwelling older adults after hip fracture. METHODS: Twenty-four older adults post-hip fracture repair participated in an ancillary study for physical therapy interventions. Measures included Trail-Making test (Parts A & B) scores, movement time (time from foot liftoff to touchdown), step speed, reaction time (time from cue to foot liftoff), and total response time (time from step cue to touchdown) in the forward and lateral directions. Paired t-tests and multiple linear regressions were used for analysis. FINDINGS: Significant differences were found in movement time, speed and reaction time between limbs in the lateral direction, and in movement and reaction time in the forward direction. Trails A predicted step speed, reaction time and total response time for the fractured limb in the lateral direction, as well as reaction time and total response time in the forward direction. However, Trails A could not predict performance for the non-fractured limb. Trails B predicted stepping performance for both limbs in the forward and lateral directions. INTERPRETATION: Trails A correlated with the fractured limb's ability to perform the choice stepping test, but not in the non-fractured limb. Meanwhile, Trails B correlated with stepping performance in both limbs, suggesting those with poorer executive function have a lower protective stepping capability and may be at a higher risk for future falls and injury.


Asunto(s)
Fracturas de Cadera/fisiopatología , Pruebas de Estado Mental y Demencia , Caminata/fisiología , Accidentes por Caídas , Anciano , Anciano de 80 o más Años , Prueba de Esfuerzo , Femenino , Humanos , Masculino , Equilibrio Postural , Tiempo de Reacción/fisiología
15.
Hum Mov Sci ; 74: 102715, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33227568

RESUMEN

Falls contribute to injuries and reduced level of physical activity in older adults. During falls, the abrupt sensation of moving downward triggers a startle-like reaction that may interfere with protective response movements necessary to maintain balance. Startle reaction could be dampened by sensory pre-stimulation delivered immediately before a startling stimulus. This study investigated the neuromodulatory effects of pre-stimulation on postural/startle responses to drop perturbations of the standing support surface in relation to age. Ten younger and 10 older adults stood quietly on an elevated computer-controlled moveable platform. At an unpredictable time, participants were dropped vertically to elicit a startle-like response. Reactive drop perturbation trials without a pre-stimulus (control) were alternated with trials with acoustic pre-stimulus tone (PSI). A two-way mixed design analysis of variance comparing condition (control vs. PSI) X group (younger vs. older) was performed to analyze changes in muscle activation patterns, ground reaction force, and joint angular displacements. Compared to younger adults, older adults showed lower neck muscle electromyography amplitude reduction rate and incidence of response. Peak muscle activation in neck, upper arm, and hamstring muscles were reduced during PSI trials compared to control trials in both groups (p < 0.05). In addition, knee and hip joint flexion prior to ground contact was reduced in PSI trials compared to control (p < 0.05). During post-landing balance recovery, increased knee and hip flexion displacement and time to peak impact force were observed in PSI trials compared to control condition (p < 0.05). PSI reduced startle-induced muscle activation at proximal body segments and likely decreased joint flexion during abrupt downward vertical displacement perturbations of the body. Older adults retained the ability to modulate startle and postural responses but their neuromodulatory capacity was reduced compared with younger adults. Further research on the potential of applying PSI as a possible therapeutic tool to reduce the risk of fall-related injury is needed.


Asunto(s)
Estimulación Acústica , Envejecimiento/fisiología , Equilibrio Postural/fisiología , Reflejo de Sobresalto/fisiología , Posición de Pie , Adulto , Anciano , Brazo/fisiología , Fenómenos Biomecánicos , Electromiografía , Femenino , Humanos , Articulaciones/fisiología , Pierna/fisiología , Masculino , Músculo Esquelético/fisiología , Músculos del Cuello/fisiología , Adulto Joven
16.
J Neuroeng Rehabil ; 17(1): 140, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33109225

RESUMEN

BACKGROUND: Stroke is a leading cause of disability with associated hemiparesis resulting in difficulty bearing and transferring weight on to the paretic limb. Difficulties in weight bearing and weight transfer may result in impaired mobility and balance, increased fall risk, and decreased community engagement. Despite considerable efforts aimed at improving weight transfer after stroke, impairments in its neuromotor and biomechanical control remain poorly understood. In the present study, a novel experimental paradigm was used to characterize differences in weight transfer biomechanics in individuals with chronic stroke versus able-bodied controls METHODS: Fifteen participants with stroke and fifteen age-matched able-bodied controls participated in the study. Participants stood with one foot on each of two custom built platforms. One of the platforms dropped 4.3 cm vertically to induce lateral weight transfer and weight bearing. Trials involving a drop of the platform beneath the paretic lower extremity (non-dominant limb for control) were included in the analyses. Paretic lower extremity joint kinematics, vertical ground reaction forces, and center of pressure velocity were measured. All participants completed the clinical Step Test and Four-Square Step Test. RESULTS: Reduced paretic ankle, knee, and hip joint angular displacement and velocity, delayed ankle and knee inter-joint timing, increased downward displacement of center of mass, and increased center of pressure (COP) velocity stabilization time were exhibited in the stroke group compared to the control group. In addition, paretic COP velocity stabilization time during induced weight transfer predicted Four-Square Step Test scores in individuals post-stroke. CONCLUSIONS: The induced weight transfer approach identified stroke-related abnormalities in the control of weight transfer towards the paretic limb side compared to controls. Decreased joint flexion of the paretic ankle and knee, altered inter-joint timing, and increased COP stabilization times may reflect difficulties in neuromuscular control during weight transfer following stroke. Future work will investigate the potential of improving functional weight transfer through induced weight transfer training exercise.


Asunto(s)
Extremidad Inferior/fisiopatología , Accidente Cerebrovascular/fisiopatología , Soporte de Peso/fisiología , Anciano , Fenómenos Biomecánicos , Prueba de Esfuerzo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Paresia/etiología , Paresia/fisiopatología , Equilibrio Postural/fisiología , Accidente Cerebrovascular/complicaciones , Rehabilitación de Accidente Cerebrovascular
17.
Phys Ther ; 100(9): 1557-1567, 2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32529236

RESUMEN

OBJECTIVE: A loss of balance poststroke from externally induced perturbations or during voluntary movements is often recovered by stepping. The purpose of this study was to characterize stepping behavior during lateral induced waist-pull perturbations and voluntary steps in community-dwelling fallers and nonfallers with chronic stroke. METHODS: This study used a cohort design. Thirty participants >6 months poststroke were exposed to 24 externally triggered lateral waist-pull perturbations and 20 voluntary steps. Balance tolerance limit (BTL) (transition from single to multiple steps) and first step type were determined for the waist-pull perturbations. Step parameters of initiation time, velocity, first step length, and clearance were calculated at and above BTL and for the voluntary steps. Hip abductor/adductor torque, foot cutaneous sensation, and self-reported falls that occurred 6 months prior were evaluated. RESULTS: Twelve participants were classified retrospectively as fallers and 18 as nonfallers. Fallers had a reduced BTL and took more medial first steps than nonfallers. Above BTL, no between-group differences were found in medial steps. At BTL, the nonparetic step clearance was reduced in fallers. Above BTL, fallers took longer to initiate a paretic and nonparetic step and had a reduced nonparetic step length and clearance compared with nonfallers. There was a between-group difference in step initiation time for voluntary stepping with the paretic leg (P < .05). Fallers had a reduced paretic abductor torque and impaired paretic foot cutaneous sensation. CONCLUSION: A high fall rate poststroke necessitates effective fall prevention strategies. Given that more differences were found during perturbation-induced stepping between fallers and nonfallers, further research assessing perturbation-induced training on reducing falls is needed. IMPACT: Falls assessments should include both externally induced perturbations along with voluntary movements in determining the fall risk.


Asunto(s)
Accidentes por Caídas/prevención & control , Equilibrio Postural/fisiología , Posición de Pie , Accidente Cerebrovascular/complicaciones , Fenómenos Biomecánicos , Femenino , Humanos , Vida Independiente , Masculino , Persona de Mediana Edad , Paresia/complicaciones , Paresia/fisiopatología , Accidente Cerebrovascular/fisiopatología , Factores de Tiempo , Torque , Caminata/fisiología
18.
Nat Commun ; 11(1): 2526, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32433562

RESUMEN

Globally, our knowledge on lake fisheries is still limited despite their importance to food security and livelihoods. Here we show that fish catches can respond either positively or negatively to climate and land-use changes, by analyzing time-series data (1970-2014) for 31 lakes across five continents. We find that effects of a climate or land-use driver (e.g., air temperature) on lake environment could be relatively consistent in directions, but consequential changes in a lake-environmental factor (e.g., water temperature) could result in either increases or decreases in fish catch in a given lake. A subsequent correlation analysis indicates that reductions in fish catch was less likely to occur in response to potential climate and land-use changes if a lake is located in a region with greater access to clean water. This finding suggests that adequate investments for water-quality protection and water-use efficiency can provide additional benefits to lake fisheries and food security.


Asunto(s)
Explotaciones Pesqueras , Lagos/química , Animales , Cambio Climático , Ecosistema , Peces/crecimiento & desarrollo , Humanos , Temperatura , Calidad del Agua
19.
PLoS One ; 15(3): e0228990, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32176717

RESUMEN

Life history theory examines how characteristics of organisms, such as age and size at maturity, may vary through natural selection as evolutionary responses that optimize fitness. Here we ask how predictions of age and size at maturity differ for the three classical fitness functions-intrinsic rate of natural increase r, net reproductive rate R0, and reproductive value Vx-for semelparous species. We show that different choices of fitness functions can lead to very different predictions of species behavior. In one's efforts to understand an organism's behavior and to develop effective conservation and management policies, the choice of fitness function matters. The central ingredient of our approach is the maturation reaction norm (MRN), which describes how optimal age and size at maturation vary with growth rate or mortality rate. We develop a practical geometric construction of MRNs that allows us to include different growth functions (linear growth and nonlinear von Bertalanffy growth in length) and develop two-dimensional MRNs useful for quantifying growth-mortality trade-offs. We relate our approach to Beverton-Holt life history invariants and to the Stearns-Koella categorization of MRNs. We conclude with a detailed discussion of life history parameters for Great Lakes Chinook Salmon and demonstrate that age and size at maturity are consistent with predictions using R0 (but not r or Vx) as the underlying fitness function.


Asunto(s)
Aptitud Genética , Salmón/fisiología , Animales , Evolución Biológica , Tamaño Corporal , Conservación de los Recursos Naturales/métodos , Femenino , Lagos , Masculino , Modelos Biológicos , Salmón/genética , Selección Genética , Maduración Sexual
20.
J Biomech ; 99: 109569, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31898976

RESUMEN

Protective arm reactions were evoked in 14 younger adults to determine the effect of fall height on protective arm reaction biomechanics. Participants were supported in a forward-leaning position on top of an inverted pendulum that isolated arm reaction by preventing any fall arresting contribution that may come from the ankle, knees, or hip. At an unpredictable time, the pendulum was released requiring participants to rapidly orient their arms to protect the head and body. Vertical ground reaction force (vGRF), arm kinematics, and electromyographic (EMG) measures of the biceps and triceps were compared at four initial lean angles. The time following perturbation onset and prior to impact consisted of two phases: rapid extension of the elbows and co-activation of the biceps and triceps in preparation for impact. The rapid orientation phase was modulated with fall height while the co-activation of the biceps and triceps in preparation for landing was minimally affected. Larger lean angles resulted in increased vGRF, increased elbow extension at impact, decreased elbow angular extension velocity at impact, and increased neck velocity at impact while hand velocity at impact was not significantly affected. The neuromuscular control strategy appears to optimize elbow extension angle/angular velocity prior to co-activation of the biceps and triceps that occurs about 100 ms prior to impact. Future work should investigate how the neuromuscular control strategy handles delayed deployment of protective arm reactions.


Asunto(s)
Accidentes por Caídas/prevención & control , Brazo/fisiología , Movimiento , Adulto , Fenómenos Biomecánicos , Articulación del Codo/fisiología , Electromiografía , Femenino , Humanos , Masculino , Músculo Esquelético/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...